Инерционные характеристики тела. Динамические, инерционные, силовые характеристики движений




Контрольная расчетно-графическая работа

"ОПРЕДЕЛЕНИЕ МАСС – ИНЕРЦИОННЫХ ХАРАКТЕРИСТИК ТЕЛА СПОРТСМЕНА"

Теоретические сведения

Физические свойства звеньев тела человека характеризуются их весом (массой), положением центра масс и главными центральными сегментами инерции относительно трех осей.

Для определения масс, координат центров масс и моментов инерции сегментов применяются либо экспериментальные, либо расчетные методы, причем последние используются гораздо чаще.

Наиболее употребительный метод расчета масс – инерционных характеристик звеньев тела спортсмена основан на результатах аналитической обработки данных антропометрических исследований. Он предусматривает использование регрессионных зависимостей вида:

X i = b 0 i + b 1 i * P + b 2 i * H

где - i условный номер звена

X i - рассчитываемая масс – инерционных характеристика

(вес, координата масс или момент инерции -го звена)

^ P - вес тела человека (кг)

H - рост человека (см)

b 0 i b 1 i b 2 i - коэффициенты уравнений множественной регрессии,

значение которых приведены в таблицах 1-5

ТАБЛИЦА 1

Коэффициенты для вычисления веса сегментов


i

Наименование сегмента

b 0 i

b 1 i

b 2 i

1

Стопа

0,0880

0,0880

0,00730

2

Голень

-1,5920

0,03620

0,01210

3

Бедро

0,01210

0,14630

0,01370

4

Кисть

-0,1165

0,00360

0,00175

5

Предплечье

0,3185

0,01445

-0,00144

6

Плечо

0,2500

0,02012

-0,00270

7

Голова

1,2960

0,01710

0,01430

8

Верхняя часть туловища

8,2144

0,18620

-0,05840

9

Средняя часть туловища

7,1810

0,22340

-0,06630

10

Нижняя часть туловища

-7,4980

0,09760

0,04896

Х1 = -0,829 + 0,00770 * 50 + 0,00730 * 167 = 0,775


Х2= -1,5920 + 0,03620 * 50 + 0,01210 * 167 = 2,239
Х3= 0,01210 + 0,14630 *50 + 0,01370 *167 =9,615
Х4= -0,1165 + 0,00360 * 50 + 0,00175 = 0,356
Х5= 0,3185 + 0,01445 *50 + -0,00144 *167= 0,801
Х6= 0,2500 + 0,02012 * 50 + -0,00270 * 167 = 0,805
Х7= 1,2960 + 0,01710 * 50 + 0,01430 * 167 = 4,359
Х8= 8,2144 + 0,18620 * 50+ -0,05840 * 167 = 7,772
Х9= 7,1810 + 0,22340 * 50 + -0,06630 * 167 = 7,279
Х10= -7,4980 + 0,09760 * 50 + 0,04896 * 167 = 5,559

ТАБЛИЦА 2

Коэффициент для определения центра масс на продольной оси сегмента


i

Наименование сегмента

b 0 i

b 1 i

b 2 i

1

Стопа

3,767

0,0650

0,0330

2

Голень

-6,050

-0,0390

0,1420

3

Бедро

-2,420

0,0380

0,1350

4

Кисть

4,110

0,0260

0,0330

5

Предплечье

0,192

-0,0280

0,0930

6

Плечо

1,670

0,0300

0,0540

7

Голова

9,357

-0,0025

0,0230

8

Верхняя часть туловища

3,320

0,0076

0,0470

9

Средняя часть туловища

1,398

0,0058

0,0450

10

Нижняя часть туловища

1,182

0,0180

0,0434

Х1 = 3,767 + 0,0650 * 50 + 0,0330 * 167 = 12,528
Х2= -6,050 + -0,0390 * 50 + 0,1420 * 167 = 15,714
Х3= -2,420 + 0,0380 * 50 + 0,1350 * 167 = 22,025
Х4= 4,110 + 0,0260 * 50 + 0,0330 * 167 = 10,921
Х5= 0,192 + -0,0280 * 50 + 0,0930 *1 67 = 14,323
Х6= 1,670 + 0,0300 * 50 + 0,0540 * 167 = 12,188
Х7= 9,357 + -0,0025 * 50 + 0,0230 * 167 = 13,073
Х8= 3,320 + 0,0076 * 50 + 0,0470 * 167 = 11,549
Х9= 1,398 + 0,0058 * 50 + 0,0450 *167 = 9,203
Х10= 1,182 + 0,0180 * 50 + 0,0434 * 167 = 9,329

ТАБЛИЦА 3

Коэффициент для вычисления главного центрального момента инерции относительно сагиттальной оси


i

Наименование сегмента

b 0 i

b 1 i

b 2 i

1

Стопа

-100,0

0,480

0,626

2

Голень

-1105,0

4,590

6,630

3

Бедро

-3557,0

31,700

18,610

4

Кисть

-19,5

0,170

0,116

5

Предплечье

-64,0

0,950

0,340

6

Плечо

-250,7

1,560

1,512

7

Голова

-78,0

1,171

1,519

8

Верхняя часть туловища

81,2

36,730

-5,970

9

Средняя часть туловища

618,5

38,800

-12,870

10

Нижняя часть туловища

-1568,0

12,000

7,741

Х1 = -100,0 + 0,480 * 50 + 0,626 * 167 = 28,542
Х2= -1105,0 + 4,590 * 50 + 6,630 * 167=231,71
Х3= -3557,0 + 31,700 * 50 + 18,610 * 167=1135,87
Х4= -19,5 + 0,170 * 50 +0,116*167=8,372
Х5= -64,0 +0,950 * 50 + 0,340 * 167 = 40,28
Х6= -250,7 + 1,560 * 50 + 1,512 * 167 =79,804
Х7= -78,0 + 1,171 * 50 + 1,519 * 167 = 234,223
Х8= 81,2 + 36,730 * 50 + -5,970 * 167 =920,71
Х9= 618,5 + 38,800 * 50 + -12,870 * 167 = 409,21
Х10=-1568,0 + 12,000 * 50 + 7,741 * 167 =324,747

ТАБЛИЦА 4

Коэффициент для вычисления главного центрального момента инерции относительно фронтальной оси


i

Наименование сегмента

b 0 i

b 1 i

b 2 i

1

Стопа

-97,09

0,414

0,614

2

Голень

-1152,00

4,594

6,815

3

Бедро

-3690,00

32,020

19,240

4

Кисть

-13,68

0,088

0,092

5

Предплечье

-69,70

0,855

0,376

6

Плечо

-232,00

1,525

1,343

7

Голова

-112,00

1,430

1,730

8

Верхняя часть туловища

367,00

18,300

-5,730

9

Средняя часть туловища

267,00

26,700

-8,000

10

Нижняя часть туловища

-934,00

11,800

3,440

Х1 = -97,09 + 0,414 * 50 + 0,614 * 167 = 26,148
Х2= -1152,00 + 4,594 * 50 + 6,815 * 167 = 215,805
Х3= -3690,00 + 32,020 * 50 + 19,240 * 167=1124,08
Х4= -13,68 + 0,088 * 50 + 0,092 * 167 =6,084
Х5= -69,70 + 0,855 * 50 + 0,376 * 167 =35,842
Х6= -232,00 + 1,525 *50 + 1,343 * 167 =68,531
Х7= -112,00 + 1,430 * 50 + 1,730 * 167 =248,41
Х8= 367,00 + 18,300 * 50 + -5,730 * 167 =325,09
Х9= 267,00 + 26,700 * 50 + -8,000 * 167 =266
Х10= -934,00 + 11,800 * 50 + 3,440 * 167 =230,48

ТАБЛИЦА 5

Коэффициент для вычисления главного центрального момента инерции относительно продольной оси


i

Наименование сегмента

b 0 i

b 1 i

b 2 i

1

Стопа

-15,48

0,1440

0,0880

2

Голень

-75,50

1,1360

0,3000

3

Бедро

-13,50

11,3000

-2,2800

4

Кисть

-6,26

0,0762

0,0347

5

Предплечье

5,99

0,3060

-0,0880

6

Плечо

-16,90

0,6620

0,0435

7

Голова

61,60

1,7200

0,0814

8

Верхняя часть туловища

561,00

36,0300

-9,9800

9

Средняя часть туловища

1501,00

43,1400

-19,8000

10

Нижняя часть туловища

-775,00

14,7000

1,6850

Х1 = -15,48 + 0,1440 * 50 +0,0880 * 167=6,416
Х2= -75,50 + 1,1360 * 50 + 0,3000 *167 = 31,4
Х3= -13,50 + 11,3000 * 50 + -2,2800 *167 =170,743
Х4= -6,26 + 0,0762 * 50 + 0,0347 * 167= 3,345
Х5= 5,99 + 0,3060 * 50 + -0,0880 *167= 6,594
Х6= -16,90 + 0,6620 * 50 + 0,0435 * 167= 23,465
Х7= 61,60 + 1,7200 * 50 + 0,0814 *167 =161,194
Х8= 561,00 + 36,0300 * 50 + -9,9800 *167= 695,84
Х9= 1501,00 + 43,1400 * 50 + -19,8000 *167 = 351,4
Х10= -775,00 + 14,7000 * 50 + 1,6850 *167 = 241,395

ВЫВОД: Инерционные характеристики раскрывают, каковы особенности тела человека и движимых им тела в их взаимодействиях. От инерционных характеристик зависит сохранение и изменение скорости. Все физические тела обладают свойством инертности, которое проявляется, а также в особенностях изменения его под действием сил. Понятие инерции раскрывается в первом законе Ньютона “Всякое тело сохраняет свое состояние покоя или равномерного и прямолинейного движения до тех пор, пока внешние приложенные силы не заставят его изменить это состояние”.Говоря проще тело сохраняет свою скорость, а также под действием внешних сил изменяет ее.

Масса-это мера инертности тела при поступательном движении. Она измеряется отношением величины приложенной силы к вызываемому ею ускорению. Масса тела характеризует, как именно приложенная сила может изменить движения тела. Одна и та же сила вызывает большое ускорение у тела с меньшей массой, чем у тела с большой массой.

Момент инерции- это мера инертности при вращательном движении. Момент инерции тела относительно оси равен сумме произведений масс вес его частиц на квадраты их расстояний от данной оси вращения. Отсюда видно, что момент инерции тела больше, когда его частицы дальше от оси вращения, а значит угловое ускорение тела под действием того же момента силы меньше, если частицы ближе к оси, то угловое ускорение больше, а момент инерции меньше. Значит, если приблизить тело к оси,то легче вызвать угловое ускорение, легче разогнать тело во вращении, легче остановить его. Этим пользуются при движении вокруг оси.

Сила-это мера механического воздействия одного тела на другое в данный момент времени. Численно она определяется произведением массы тела и его ускорения, вызванного данной силой. Чаще всего говоря про силу и результат ее действия,но это применимо только к простейшему поступательному движению тела. В движениях человека как системы тел, где все движения частей тела вращательные, изменение вращательного движения зависят не от силы, а от момента силы.

Момент силы -это мера вращающего действия силы на тело. Он определяется произведением силы на ее плечо. Момент силы обычно считают положительным, когда сила вызывает поворот тела против часовой стрелки и отрицательным при повороте по часовой стрелке. Что бы сила могла проявить свое вращающее действие, она должна иметь плечо. Иначе говоря, она не должна проходить через ось вращения. Определение силы или момента силы, если известна масса или момент инерции, позволяет узнать только ускорение, т.е. как быстро изменяется скорость. Надо еще узнать, насколько именно измениться скорость. Для этого должны быть известно, как долго была приложена сила. Иначе говоря, следует определить импульс силы(или ее момент).

Импульс силы- это мера воздействия силы на тело за данный промежуток времени в поступательном движении. Он равен произведению силы и продолжительности ее действия. Любая сила, приложенная даже в малые доли секунды, имеет импульс. Именно импульс силы определяет изменение скорости, силой же обусловлено только ускорение. Во вращательном движении момент силы, действуя в течение определенного времени, создает импульс момента силы.

Импульс момента силы- это мера воздействия момента силы относительно данной оси за данный промежуток времени во вращательном движении. Наиболее общим показателем распределения масс в теле служит общий центр тяжести тела (ОЦТ).Как известно, центром тяжести называется точка тела, к которой как бы приложена равнодействующая всех сил тяжести тела. Во все стороны от этой точки, по любому направлению, моменты сил, действующих на все частицы тела в любом направлении, приложена к ОЦТ; поэтому в этом случае ОЦТ называют еще центром массы, или центром инерции.

Расположение ОЦТ необходимо знать при изучении статики для оценки условий равновесия тела. Путь движения- траектория ОЦТ во многих случаях дает ценные сведения об особенностях движения тела, так как отражает действие внешних сил на тело. ОЦТ не может перемещается иначе как под действием внешних сил. Одни внутренние силы некогда не когда не могут изменить продолжение и путь ОЦТ.

Общий центр тяжести тела располагается в зависимости от телосложения человека. У людей с более развитыми ногами ОЦТ относительного ниже, чем у людей с более мощной мускулатурой туловища и рук. У длинноногих людей ОЦТ анатомически расположен ниже, но он дальше от земли, чем у коротконогих.

Классификация динамических характеристик движений человека

Вращательное движение тела

Мерой изменения положения тела при вращательном движении является угол поворота фи. Чтобы знать положение тела во вращательном движении в любой момент времени, надо знать зависимость угла поворота фи от времени: фи = фи(t).

Данное уравнение выражает закон вращательного движения тела. Основными кинематическими характеристиками вращательного движения тела являются его угловая скорость (ω ) и угловое ускорение (e ) .

При вращательном движении тела разные его точки имеют различные линейные скорости и ускорения. Линейная скорость точки вращающегося тела численно равна произведению угловой скорости на радиус вращения и направлена по касательной к окружности вращения (перпендикулярно радиусу вращения R ): V = ω R.

Таким образом, линейные скорости точек вращающегося тела пропорциональны их расстояниям от оси вращения (чем дальше удалена точка от оси вращения, тем большую линейную скорость она имеет).

Пример. При выполнении гимнастом большого оборота на перекладине линейная скорость точки, расположенной в области тазобедренного сустава составляет 10,8 м/с, а точки, расположенной в области голеностопного сустава – 18,0 м/с.

В таблице 3.2. представлена взаимосвязь кинематических характеристик при поступательном и вращательном движениях тела.

Таблица 3.2.

Взаимосвязь показателей при поступательном и вращательном движении тела (Н.Б. Кичайкина, 2000)

Скорость движений человека и движимых им тел изменяются под действием сил. Чтобы раскрыть механизм движений (причины их возникновения и направленность их изменений) исследуют динамические характеристики. К ним относятся:

· инерционные характеристики (особенности тела человека и движимых им тел);

· силовые (особенности взаимодействия звеньев тела и других тел);

· энергетические (характеристики состояния систем).

Разные тела изменяют скорость под действием сил по-разному. Это свойство тел называется инертностью.

Инертность – свойство физических тел, от которого зависит величина получаемых ускорений при их взаимодействии.

Инерционные характеристики – это характеристики тела или системы тел. Среди инерционных характеристик различают: массу тела и момент инерции тела .

Масса тела (m ) – мера инертности тела при поступательном движении. Она измеряется отношением величины приложенной силы к вызываемому ею ускорению: m= F /a ,



где: m – масса; F – сила; a – ускорение.

Масса тела зависит от количества вещества, которым обладает тело и характеризует его свойство – как именно приложенная сила может изменить его движение. Одна и та же сила вызовет большее ускорение у тела с меньшей массой, чем у тела с большей массой.

В атлетизме при тренировке спортсмены используют штангу различной массы. Из личного опыта им известно, что придать штанге, имеющей большую массу ускорение значительно сложнее, чем штанге маленькой массы.

В случае вращательного движения мало знать массу тела, важно еще знать распределение масс относительно оси вращения. Например, фигурист при вращении прижимает руки к туловищу, а затем разводит их в стороны. Общая масса системы при этом не изменяется, а распределение масс становится другим, и это сказывается на движении, оно замедляется (Н.Б. Кичайкина, 2000). В механике существует характеристика, определяющая меру инертности тела во вращательном движении – момент инерции тела.

Момент инерции тела (J ) – мера инертности твердого тела при вращательном движении.

Момент инерции зависит от распределения массы относительно оси вращения. Его достаточно легко найти для простых геометрических фигур (шар, цилиндр и др.), но определить его в многозвенной системе тела человека при различных позах непросто.

К ранее рассмотренным кинематическим мерам изменения движения (скорости и ускорению) добавляют­ся динамические меры изменения движения (количество движения и кинетический момент). Совместно с мерами действия сил они отражают взаимосвязь сил и движения. Изучение их помога­ет понять физические основы двигательных действий человека.

Динамика (от греч. dynamikós - сильный, от dýnamis - сила), раздел механики, посвященный изучению движения материальных тел под действием приложенных к ним сил. В основе динамики лежат три закона И. Ньютона, из которых как следствия получаются все уравнения и теоремы, необходимые для решения задач динамики. Все движения человека и движимых им тел под действием сил изменяются по величине и направлению скорости. Чтобы раскрыть механизм движений (причины их возникновения и ход их изменения), исследуют динамические характеристики. К ним относятся инерционные характеристики (особенности самих движущихся тел), силовые (особенности взаимодействия тел) и энергетические (состояния и изменения работоспособности, биомеханических систем).

Инерционные характеристики раскрывают особенности тела человека и движимых им тел в их взаимодействиях. От инерционных характеристик зависит сохранение и изменение скорости.

Все физические тела обладают свойством инертности (или инерции), которое проявляется в сохранении движения, а также в особенностях изменения его под действием сил.

Понятие инерции раскрывается в первом законе Ньютона: "Всякое тело сохраняет свое состояние покоя или равномерного и прямолинейного движения до тех пор, пока внешние приложенные силы не заставят его изменить это состояние".

Масса - это мера инертности тела при поступательном движении. Она измеряется отношением величины приложенной силы к вызываемому ею ускорению. Масса (m) - это количество вещества (в килограммах), содержащееся в теле или отдельном звене.

Масса тела характеризует, как именно приложенная сила может изменить движение тела. Одна и та же сила вызовет большее ускорение у тела с меньшей массой, чем у тела с большей массой.

Вес тела - это сила, с которой тело вследствие его притяжения к Земле действует на горизонтальную опору.

Момент инерции - это мера инертности тела при вращательном движении. Момент инерции тела относительно оси равен сумме произведений масс всех его частиц на квадраты их расстояний от данной оси вращения.

Отсюда видно, что момент инерции тела больше, когда его частицы дальше от оси вращения, а значит угловое ускорение тела под действием того же момента силы меньше; если частицы ближе к оси, то угловое ускорение больше, а момент инерции меньше. Значит, если приблизить тело к оси, то легче вызвать угловое ускорение, легче разогнать тело во вращении, легче и остановить его. Этим пользуются при движении вокруг оси.

Силовые характеристики. Известно, что движение тела может происходить как под действием приложенной к нему движущей силы, так и без движущей силы (по инерции), когда приложена только тормозящая сила. Движущие силы приложены не всегда; без тормозящих же сил движения не бывает. Изменение движений происходит под действием сил. Сила не причина движения, а причина изменения движения; силовые характеристики раскрывают связь действия силы с изменением движения.

Сила - это мера механического воздействия одного тела на другое в данный момент времени. Численно она определяется произведением массы тела и его ускорения, вызванного данной силой.

Чаще всего говорят про силу и результат ее действия, но это применимо только к простейшему поступательному движению тела. В движениях человека как системы тел, где все движения частей тела вращательные, изменение вращательного движения зависит не от силы, а от момента силы.

Момент силы - это мера вращающего действия силы на тело. Он определяется произведением силы на ее плечо.

Момент силы обычно считают положительным, когда сила вызывает поворот тела против часовой стрелки, и отрицательным при повороте по часовой стрелке.

Чтобы сила могла проявить свое вращающее действие, она должна иметь плечо. Иначе говоря, она не должна проходить через ось вращения.

Определение силы или момента силы, если известна масса или момент инерции, позволяет узнать только ускорение, т.е. как быстро изменяется скорость. Надо еще узнать, насколько именно изменится скорость. Для этого должно быть известно, как долго была приложена сила. Иначе говоря, сле­дует определить импульс силы (или ее момента).

Импульс силы - это мера воздействия силы на тело за данный промежуток времени (в поступательном движении). Он равен произведению силы и продолжительности ее действия.

Любая сила, приложенная даже в малые доли секунды (например: удар по мячу), имеет импульс. Именно импульс силы определяет изменение скорости, силой же обусловлено только ускорение.

Во вращательном движении момент силы, действуя в течение определенного времени, создает импульс момента силы.

Импульс момента силы - это мера воздействия момента силы относительно данной оси за данный промежуток времени (во вращательном движении).

Вследствие импульса, как силы, так и момента силы возникают изменения движения, зависящие от инерционных свойств тела и проявляющиеся в изменении скорости (количество движения, кинетический момент).

Количество движения - это мера поступательного движения тела, характеризующая его способность передаваться другому телу в виде механического движения. Количество движения тела измеряется произведением массы тела на его скорость.

Кинетический момент (момент количества движения) - это мера вращательного движения тела, характеризующая его способность передаваться другому телу в виде механического движения. Кинетический момент равен произведению момента инерции относительно оси вращения на угловую скорость тела.

Соответствующее изменение количества движения происходит под действием импульса силы, а под действием импульса момента силы происходит определенное изменение кинетического момента (момента количества движения).

Энергетические характеристики. Энергия (от греч. enérgeia - действие, деятельность), общая количественная мера движения и взаимодействия всех видов материи. Энергия в природе не возникает из ничего и не исчезает; она только может переходить из одной формы в другую. Механическая энергия - энергия механического движения и взаимодействия тел системы или их частей. Механическая энергия равна сумме кинетической и потенциальной энергии механической системы.

При движениях человека силы, приложенные к его телу на некотором пути, совершают работу и изменяют положение и скорость звеньев тела, что изменяет его энергию. Работа характеризует процесс, при котором меняется энергия системы. Энергия же характеризует состояние системы, изменяющейся вследствие работы. Энергетические характеристики показывают, как меняются виды энергии при движении, и протекает сам процесс изменения энергии.

Работа силы - это мера действия силы на тело при некотором его перемещении под действием этой силы. Она равна произведению модуля силы и перемещения точки приложения силы.

Если сила направлена в сторону движения (или под острым углом к этому направлению), то она совершает положительную работу, увеличивая энергию движения тела. Когда же сила направлена навстречу движению (или под тупым углом к его направлению), то работа силы отрицательная и энергия движения тела уменьшается.

Работа момента силы - это мера воздействия момента силы на тело на данном пути (во вращательном движении). Она равна произведению модуля момента силы и угла поворота.

Понятие работы представляет собой меру внешних воздействий, приложенных к телу на определенном пути, вызывающих изменения механического состояния тела.

Энергия - это запас работоспособности системы. Механическая энергия определяется скоростями движений тел в системе и их взаимным расположением; значит, это энергия перемещения и взаимодействия.

Кинетическая энергия тела - это энергия его механического движения, определяющая возможность совершить работу. При поступательном движении она измеряется половиной произведения массы тела на квадрат его скорости, при вращательном движении половиной произведения момента инерции на квадрат его угловой скорости.

Потенциальная энергия тела - то энергия его положения, обусловленная взаимным относительным расположением тел или частей одного и того же тела и характером их взаимодействия. Потенциальная энергия в поле сил тяжести определяется произведением силы тяжести на разность уровней начального и конечного положения над землей (относительно которого определяется энергия).

Энергия как мера движения материи переходит из одного вида в другой. Так, химическая энергия в мышцах превращается в механическую (внутреннюю потенциальную упруго-деформированных мышц). Порожденная последней сила тяги мышц совершает работу и преобразует потенциальную энергию в кинетическую энергию движущихся звеньев тела и внешних тел. Механическая энергия внешних тел (кинетическая), передаваясь при их действии на тело человека его звеньям, преобразуется в потенциальную энергию растягиваемых мышц-антаганистов, а также в рассеивающуюся тепловую энергию.

Из курса физики известно, что инерция – это разность сил, приложенных к телу с противоположных направлений.

Так, для обеспечения движения судна, к нему должна быть приложена сила в направлении требуемого движения. Такую силу может создать движитель, используя свои физические свойства. Так винт создает силу упора, которая и движет судно (рис.5.3).

Рис.5.3 Схема сил, действующих на судно, движущееся прямым курсом.

Судно, представляющее собой тело с определенной массой m , находится в состоянии покоя, пока на него не воздействует сила F дв ., создаваемая грибным винтом. При движении судна образуется другая сила R общ. состоящая из сил: сопротивления воды R о , сопротивления воздуха R в и силы трения F тр . Под действием сил F дв. и R общ. прямо противоположных одна другой, движение судна будет ускоренным (когда F дв > R общ. ), равномерным (когда F дв = R общ ) или замедленным (когда F дв ).

Уравнение движения судна можно записать в следующем виде:

F дв - R общ = mΔv/t =ma

где m – масса судна, кг равная 1000 Д/g (здесь Д –водоизмещение, кН, g – ускорение свободного падения, равное 9,81 м/с 2);

Δv – приращение скорости судна, м/с;

t – время, с;

F дв и R общ – имеют размерность кН.

Из уравнения движения видно, что масса судна и приращение скорости определяют его инерционные свойства.

Таким образом, под инерционными свойствами судна понимают определенную физическую зависимость между массой и быстротой приращения его скорости (ускорением).

Следовательно, под инерцией судна понимается способность его сохранять поступательное движение после остановки движителя или перевода его с переднего хода на задний или наоборот. Обычно инерционные свойства судна определяют опытным путем во время ходовых испытаний. Результаты испытаний заносят в таблицу маневренных элементов.

Для судовождения наиболее важны расстояние и время, необходимые для гашения инерции судна или для развития его максимальной скорости. Эти параметры принято называть инерционными характеристиками . К основным инерционным характеристикам судна (рис.5.4) относят разгон , свободный выбег и торможение .

Разгон – процесс достижения судном установившейся скорости при заданном режиме работы движителей.

Характеризуется расстоянием и временем, необходимым для достижения установившейся скорости. Ориентировочно величина разгона составляет 7 -8 длин судна (с V =0 до Vmax).

Рис.5.4. Инерционные характеристики судов

Свободный выбег – процесс гашения инерции под воздействием сопротивления воды и воздуха движению без активной работы движителей. Характеризуется длиной выбега – расстоянием, которое проходит судно с момента подачи команды «Стоп» до полного прекращения движения, и временем, затраченным на этот процесс. Ориентировочно величина выбега составляет 10 -15 длин судна.

Торможение – процесс гашения инерции прямолинейного движения судна путем реверсирования движителей с переднего хода на задний (или наоборот)

Торможение характеризуется длиной тормозного пути и временем торможения.

Тормозной путь – это расстояние, пройденное судном с момента подачи команды «Стоп» и реверса движителей до полной остановки судна (V=0).

Время торможения – это время, затраченное на процесс полного гашения инерции в результате работы движителей в режиме «Полный назад». Ориентировочно для одиночных судов тормозной путь составляет 5- 6 длин судна.

Тело человека представляет собой сложную биомеханическую систему, которая в повседневной жизни может испытывать значительные ускорения, а в спорте высших достижений особен­но. При этом возникают усилия, приводящие к нарушению коор­динации движений, травмам и прочим изменениям в тканях ОДА.

Исследования движений человека (спортсмена) аналитически­ми методами механики проводятся с помощью моделей различной сложности, заменяющих ОДА и воспроизводящих действительную картину движений со степенью точности, достаточной для постав­ленных в процессе исследований задач.

Все сочленения звеньев тела можно моделировать геометриче­ски идеальными вращательными шарнирами.

Чтобы воспроизвести движения тела человека, в моделях из мак­симально возможных шести измеряемых движений для каждого твер­дого звена, когда оно не присоединено к соседним звеньям (трех по­ступательных и трех вращательных относительно трех координатных осей, фиксированных на соседнем звене), при наложении кинема­тических связей исключаются все поступательные и остаются лишь вращательные движения, причем нередко допускаются только неко­торые вращательные движения из трех возможных. Все оставшиеся вращательные движения составляют степени свободы звеньев.

Формула для определения числа степеней свободы ОДА в целом:



где и - число степеней свободы; N - число подвижных звеньев в модели тела; / - число ограничений степеней свободы в соеди­нениях-суставах; Р. - число соединений с (ограничениями. При этом ЕР. = N - /.

Общее число степеней свободы тела человека составляет око­ло 6 144 - 5 81 - 4 33 - 3 29 = 240 (A. Morecki et al., 1969), но с полной достоверностью точное число неизвестно в связи с при­ближенным характером модели.

По кинематической схеме модели (см. рис. 17.43), подобно уп­рощенному скелету руки (см. рис. 17.43, г), легко подсчитать, что в этом примере подвижность руки относительно плечевого пояса оценивается 7-ю степенями свободы.

Положение о преодолении избыточных степеней свободы при работе наглядно изображается на кинематической схеме (см. рис. 17.43, а), если момент мышечных сил в каждом суставе разложить на его составляющие по степени свободы (см. 17.43, г). Очевидно, что число этих компонент момента будет равно числу степеней свободы.



Различают две задачи динамики. При решении первой задачи считается, что известны законы движения всех звеньев (обоб­щенные координаты) и определяются суставные моменты и дина­мические нагрузки в суставах. Этот расчет позволяет оценить прочность, жесткость и надежность исследуемой системы. Вторая задача динамики заключается в определении динамических оши­бок - отклонений законов движения от заданных. Известными счита­ются внешние силы и находятся законы движения.

При решении задач динамики необходимо выбрать и обосновать динамическую расчетную схему. Важную роль при их построении играет моделирование воздействий внешних факторов, в том чис­ле трения, материала и др. Затем строят математическую модель, соответствующую динамической расчетной схеме.

При построении динамических расчетных схем тела человека актуальным является определение масс-инерционных характери­стик (МИХ) сегментов тела: масс, моментов инерции, координат центров масс отдельных сегментов (частей) тела. Границы сегмен­тов набирают таким образом, чтобы внутри сегмента отсутство­вала деформация или непроизвольное изменение геометрии масс сегмента. Обычно выделяют следующие сегменты: стопу, голень, бедро, кисть, предплечье, плечо, голову, верхний, средний и ниж­ней отделы туловища. На рис. 17.45 указаны значения моментов




инерции основных сегментов (оси обозначены в соответствии с рис. 2.1); на рис. 17.45 - антропометрические точки, определяющие границы сегментов и координаты центров масс сегментов на их про­дольных осях, в табл. 17.12 - относительные массы сегментов (за 100% принята масса тела).

Оценку масс-инерционных параметров выполняют как прямыми методами (погружение в воду, внезапное освобождение, сечение трупов, компьютерная томография и др.), так и с использованием методов математического и физического моделирования. В послед­ние годы наиболее удобным методом является метод геометричес­кого моделирования.

Метод прост, для его выполнения необходимы антропометрические измерения (10 обхватов и 10 длин). Минимум ошибок прогнозируется для МИХ отдельных сегментов за счет введения индивидуальных ко­эффициентов квазиплотности. Кроме этих методов, используют метод определения МИХ по уравнению регрессии, с использованием массы (X t) и длины тела (X,): Y = В 0 + В Х Х Х + BJC r Параметры регрессии представлены в табл. 17.11.

Антропометрические характеристики определяют геомет­рические размеры тела человека и отдельных его сегментов: это величины, случайным образом измеряющиеся в зависимости от возраста, пола, национальности, рода занятий и т. д.

Основные статические, т. е. измерения при фиксированной позе, размеры тела приведены на рис. 17.46, а, и в табл. 17.8.

Динамические антропометрические характеристики исполь­зуют для оценки объема рабочих движений, зон досягаемости и в других биомеханических и эргономических задачах, в частности при создании антропометрических манекенов. Некоторые дина­мические параметры приведены в табл. 17.11; 17.12; 17.13 и на рис. 17.46,6.